1P. Garg, and T.V.S. Sekhar. "Hybrid GFD-RBF Method for Convection-Diffusion Problems" arXiv preprint arXiv:2412.08365, 2024.
2Madhumita Sahoo, Bapuji Sahoo, and T.V.S. Sekhar. "Natural Convection Heat Transfer Around a Sphere in a Rotating Fluid." International Conference on Computational Heat and Mass Transfer, 81-90, 2023.
3N.B. Barik, and T.V.S. Sekhar. "Multilevel meshfree RBF-FD method for elliptic partial differential equations." Engineering Mathematics and Computing, 1-10, 2022.
4Bapuji Sahoo, Subharthi Sarkar, R. Sivakumar, and T.V.S. Sekhar. "The effect of rotating fluid with Taylor column on forced convective heat transfer." International Communications in Heat and Mass Transfer 137, 106222, 2022.
5Bapuji Sahoo, Bikash Mahato, and T.V.S. Sekhar."A higher-order numerical analysis to study the flow physics and to optimize the design of a short-dwell blade coaters for higher efficiency." Journal of Physics: Conference Series 2090 (1), 012053, 2021.
6Bapuji Sahoo, Subharthi Sarkar, R. Sivakumar, and T. V. S. Sekhar. "On the numerical capture of Taylor column phenomena in rotating viscous fluid." European Journal of Mechanics-B/Fluids 89: 126-138, 2021.
7Subharthi Sarkar, Bapuji Sahoo, and T.V.S. Sekhar. "Influence of magnetic field in the control of Taylor column phenomenon in the translation of a sphere in a rotating fluid." Physics of Fluids, 33(7), 2021.
8N.B. Barik, and T.V.S. Sekhar. "A modified multilevel meshfree algorithm for steady convection‐diffusion problems." International Journal for Numerical Methods in Fluids, 93(7), pp.2121-2135, 2021.
9P. Padhi, S. Udhayakumar, T.V.S. Sekhar, and R. Sivakumar. "Thermo-magneto-convection and mechanism of multiple eddy formation due to applied magnetic field in a lid-driven cavity." Engineering Research Express, 3(1), 015013, 2021.
10N.B. Barik, and T.V.S. Sekhar. "Mesh-free multilevel iterative algorithm for Navier–Stokes equations." Numerical Heat Transfer, Part B: Fundamentals, 79(3), 150-164, 2020.
11S Ghosh, S Sarkar, R Sivakumar, T V S Sekhar "Forced convection magnetohydrodynamic flow past a circular cylinder by considering the penetration of magnetic field inside it" Numerical Heat Transfer, Part A: Applications, 76, 32-49, 2019.
12S Sarkar, S Ghosh, R Sivakumar, T V S Sekhar "On the quasi-static approximation in the finite magnetic Reynolds number magnetohydrodynamic flow past a circular cylinder" European Journal of Mechanics-B/Fluids 77, 259-272, 2019.
13S Ghosh, S Sarkar, R Sivakumar, T V S Sekhar "Full magnetohydrodynamic flow past a circular cylinder considering the penetration of magnetic field" Physics of Fluids 30 (8), 087102, 2018.
14Nikunja Bihari Barik and T. V. S. Sekhar "An efficient local RBF meshless scheme for steady convection-diffusion problems" Int. J. Computational Methods, Vol. 14 (2017) 1750064 (17 pages).
15S. Udhayakumar, A. D. AbinRejeesh, T. V. S. Sekhar and R. Sivakumar "Study of directional control of heat transfer and flow control in the magnetohydrodynamic flow in cylindrical geometry" Int. J. Heat and Fluid Flow, Vol. 61 (2016) 482-498.
16S. Vimala, S. Damodaran, R. Sivakumar, T.V.S. Sekhar
"The role of magnetic Reynolds number in MHD forced
convection heat transfer."
Applied Mathematical Modelling, Vol. 40, (2016) 6737-6753.
17S. Udhayakumar, A. D. B. Rejeesh, T. V. S. Sekhar and R. Sivakumar.
"Numerical investigation of magnetohydrodynamic mixed convection over an isothermal circular cylinder in presence of an aligned magnetic field".
Int. J. Heat and Mass Transfer, 95 (2016) 379-292.
18 R. Sivakumar, S. Vimala, S. Damodaran and T. V. S. Sekhar .
"Study of Heat Transfer Control with Magnetic Field Using Higher Order Finite Difference Scheme".
Advances in Applied Mathematics and Mechanics, 8 (2016) 449-463.
19T. V. S. Sekhar, B. Hema Sundar Raju and P.V.S.N. Murthy .
"Higher order compact scheme for laminar natural convective heat transfer from a sphere".
Applied Mathematical Modeling, 40 (2016) 2039-2055.
20S. Udhayakumar, T. V. S. Sekhar, R. Sivakumar. "Numerical Experiments on the study of Mixed convection flow in cylindrical geometry."Numerical Heat Transfer Part A , 68 (2015) 870-886.
21R. Sivakumar, S. Vimala, and T. V. S. Sekhar. "Influence of Induced magnetic field on thermal MHD flow."Numerical Heat Transfer Part A, 68 (2015) 797-811.
22T. V. S. Sekhar and B. Hema Sundar Raju. "Spherical Geometry HOC Scheme to Capture Low Pressures within a Wake."Â East Asian Journal on Applied Mathematics, 3 (2013) 93-106.
23T. V. S. Sekhar and B. Hema Sundar Raju. "An efficient Higher order compact scheme to capture heat transfer solutions in spherical geometry."Computer Physics Communications, 183 (2012) 2337-2345.
24B. Hema Sundar Raju and T. V. S. Sekhar. "Higher order compact scheme combined with multigrid method for momentum, pressure Poisson and energy equations in cylindrical geometry."The Open Numerical Methods Journal, 4 (2012) 46-58.
25T. V. S. Sekhar, R. Sivakumar, S. Vimala and Y. V. S. S. Sanyasiraju. "A combined fourth order compact scheme with accelerated multigrid method for energy equation in spherical polar coordinates."Electronic Transactions on Numerical Analysis, 39 (2012) 32-45.
26T. V. S. Sekhar, R. Sivakumar, T. V. R. Ravi Kumar and S. Vimala. "Numerical simulations of highly non-linear coupled full MHD equations in spherical geometry".Int. J. Non-Linear Mechanics, 47 (2012) 599-615.
27T. V. S. Sekhar and B. Hema Sundar Raju and Y. V. S. S. Sanyasiraju. "Higher order compact scheme for incompressible Navier-Stokes equations in spherical geometry."Commun. Comp. Phys. 11(2012) 99-113.
28T. V. S. Sekhar, R. Sivakumar, K. Subbarayudu and Y. V. S. S. Sanyasiraju. "Non-monotonic behavior of forced convective heat transfer under the influence of external magnetic field."Numerical Heat Transfer Part A, 59 (2011) 459 – 486.
29T. V. S. Sekhar, R. Sivakumar and T. V. R. Ravi Kumar. "Effect of magnetic Reynolds number on 2-D hydromagnetic flow around a cylinder."Int. J. Num. Meth. in Fluids, 59 (2009) 1351-1368.
30T. V. S. Sekhar, R. Sivakumar, T. V. R. Ravi Kumar and K. Subbarayudu. "High Reynolds number incompressible MHD flow under low Rm approximation."Int. J. Non-Linear Mechanics, 43 (2008), 231-240.