1Dey, D., Marsh, R., Drijfhout, S., Josey, S. A., Sinha, B., Grist, J., & Döös, K. (2024). Formation of the Atlantic Meridional Overturning Circulation lower limb is critically dependent on Atlantic-Arctic mixing. Nature Communications, 15(1), 7341. https://doi.org/10.1038/s41467-024-51777-w
2Joseph, L., Skliris, N., Dey, D., Marsh, R., & Hirschi, J. (2024). Increased summer monsoon rainfall over Northwest India caused by Hadley cell expansion and Indian Ocean warming. Geophysical Research Letters, 51, e2024GL108829. https://doi.org/10.1029/2024GL108829
3Harris, E., Dey, D., Marsh, R., Grist, J. (2024). Meridional Heat Convergence Will Increase Tropical North Atlantic Heat Content Available for Hurricane Intensification. In: Collins, J., Done, J., Zhu, YJ., Wilson, P. (eds) Advances in Hurricane Risk in a Changing Climate. Hurricane Risk, vol 3. Springer, Cham. DOI: https://doi.org/10.1007/978-3-031-63186-3_4
4Marsh, R., Dey, D., Lenn, YD. et al (2024). Shifts from surface density compensation to projected warming, freshening and stronger stratification in the subpolar North Atlantic. Climate Dynamics. DOI: https://doi.org/10.1007/s00382-024-07336-6
5Dey, D., Geen, R., Lambert, F. H., Agrawal, S., Vallis, G., Marsh, R., & Döös, K. (2023). Identification of the atmospheric water sources and pathways responsible for the East Asian summer monsoon rainfall. Quarterly Journal of the Royal Meteorological Society. DOI: https://doi.org/10.1002/qj.4621
6Geen, R., Pietschnig, M., Agrawal, S., Dey, D., Lambert, F. H., & Vallis, G. K. (2023). The Relationship between Model Biases in East Asian Summer Monsoon Rainfall and Land Evaporation. Advances in Atmospheric Sciences, 2029–2042. DOI: https://
doi.org/10.1007/s00376-023-2297-1
7Dey, D., Aldama Campino, A., & Döös, K. (2023). Atmospheric water transport connectivity within and between ocean basins and land. Hydrology and Earth System Sciences, 27(2), 481-493. DOI: https://doi.org/10.5194/hess-27-481-2023
8Dey, D., & Döös, K. (2021). Tracing the origin of the South Asian summer monsoon precipitation and its variability using a novel Lagrangian framework. Journal of Climate, 34(21), 8655-8668. DOI: https://doi.org/10.1175/JCLI-D-20-0967.1
9Dey, D., & Döös, K. (2020). Atmospheric freshwater transport from the Atlantic to the Pacific Ocean: A Lagrangian analysis. Geophysical Research Letters, 47(6), e2019GL086176. DOI: https://doi.org/10.1029/2019GL086176
10Pramanik, S., Sil, S., Mandal, S., Dey, D., & Shee, A. (2019). Role of interannual equatorial forcing on the subsurface temperature dipole in the Bay of Bengal during IOD and ENSO events. Ocean Dynamics, 69, 1253-1271. DOI: https://doi.org/10.1007/s10236-019-01303-0
11Dey, D., & Döös, K. (2019). The coupled ocean–atmosphere hydrologic cycle. Tellus A: Dynamic Meteorology and Oceanography, 71(1), 16504. DOI: https://doi.org/10.1080/16000870.2019.1650413
12Dey, D., Sil, S., Jana, S., Pramanik, S., & Pandey, P. C. (2017). An assessment of TropFlux and NCEP air-sea fluxes on ROMS simulations over the Bay of Bengal region. Dynamics of Atmospheres and Oceans, 80, 47-61. DOI: https://doi.org/10.1016/j.dynatmoce.2017.09.002