1ATAD2 Suppression Enhances the Combinatorial Effect of Gemcitabine and Radiation in Pancreatic Cancer Cells, M. Dutta, D. Mohapatra, A.P. Mohapatra, S. Senapati, A. Roychowdhury. Biochem Biophys Res Commun. 2022 Oct 15 ; 635:179-186. doi: 10.1016/j.bbrc.2022.10.021 [I.F=3.575].
2MicroRNA-217 Modulates Pancreatic Cancer Progression via Targeting ATAD2. M. Dutta, B. Das, D. Mohapatra, P Behera, S Senapati, A. Roychowdhury, Life Sci. 2022 Jul 15;301:120592. doi: 10.1016/j.lfs.2022.120592. [I.F=5.037].
3Effects of Probiotics at the Interface of Metabolism and Immunity to Prevent Colorectal Cancer-Related Gut-inflammation: A Systematic Network and Meta-analysis with Molecular Docking Studies, S. Patra, N. Sahu, S. Saxena, B. Pradhan, S. K. Nayak, A. Roychowdhury, Front Microbiol. 2022 May 27;13:878297. doi: 10.3389/fmicb.2022.878297 [I.F=5.64].
4Emerging oncogene ATAD2: Signaling cascades and therapeutic initiatives. A Nayak, M Dutta, A Roychowdhury, Life Sci. 2021 Jul 1;276:119322. doi: 10.1016/j.lfs.2021.119322 [I.F=5.037].
5Systematic network and meta-analysis on the antiviral mechanisms of probiotics: a preventive and treatment strategy to mitigate SARS-CoV-2 infection. S Patra, S Saxena, N Sahu, B Pradhan, A Roychowdhury, Probiotics and antimicrobial proteins, 2021 Aug;13(4):1138-1156. doi: 10.1007/s12602-021-09748-w [I.F=4.609].
6Oncogenic potential of ATAD2 in stomach cancer and insights into the protein-protein interactions at its AAA+ ATPase domain and bromodomain. A Nayak, S Kumar, SP Singh, A Bhattacharyya, A Dixit, A Roychowdhury. J Biomol Struct Dyn. 2021 Jan 13:1-17. doi: 10.1080/07391102.2021.1871959 [I.F=3.392].
7HIF1α-dependent upregulation of ATAD2 promotes proliferation and migration of stomach cancer cells in response to hypoxia. A Nayak, AD Roy, N Rout, SP Singh, A Bhattacharyya, A Roychowdhury, Biochem Biophys Res Commun. 2020 Mar 19;523(4):916-923. doi: 10.1016/j.bbrc.2019.12.130 [I.F=3.575].
8Mechanisms of interactions of the nucleotide cofactor with the RepA protein of plasmid RSF1010. Binding dynamics studied using the fluorescence stopped-flow method IE Andreeva, A Roychowdhury, MR Szymanski, MJ Jezewska, W. Bujalowski. Biochemistry. 2009 Nov 10; 48(44):10620-36. doi: 10.1021/bi900940q [I.F=3.162].
9Interactions of the Escherichia coli DnaB−DnaC Protein Complex with Nucleotide Cofactors. 1. Allosteric Conformational Transitions of the Complex. A Roychowdhury, MR Szymanski, MJ Jezewska, W Bujalowski, Biochemistry. 2009 Jul 28;48(29):6712-29. doi: 10.1021/bi900050x [I.F=3.162].
10Mechanism of NTP Hydrolysis by the Escherichia coli Primary Replicative Helicase DnaB Protein. 2. Nucleotide and Nucleic Acid Specificities. A Roychowdhury, MR Szymanski, MJ Jezewska, W Bujalowski. Biochemistry. 2009 Jul 28; 48(29):6730-46. doi: 10.1021/bi9000529 [I.F=3.162].
11Escherichia coli DnaB Helicase−DnaC Protein Complex: Allosteric Effects of the Nucleotides on the Nucleic Acid Binding and the Kinetic Mechanism of NTP hydrolysis. 3. A Roychowdhury, MR Szymanski, MJ Jezewska, W Bujalowski. Biochemistry. 2009 Jul 28; 48(29):6747-63. doi: 10.1021/bi9000535 [I.F=3.162].
12Accumulation of p-hydroxybenzoic acid in hairy roots of Daucus carota. D Sircar, A Roychowdhury, A Mitra J Plant Physiol. 2007 Oct; 164(10):1358-66. doi: 10.1016/j.jplph.2006.08.002 [I.F=3.549].
13Kinetic mechanisms of the nucleotide cofactor binding to the strong and weak nucleotide-binding site of the Escherichia coli PriA helicase. 2 AL Lucius, MJ Jezewska, A Roychowdhury, W Bujalowski. Biochemistry. 2006 Jun 13; 45(23):7217-36. doi: 10.1021/bi051827e [I.F=3.162].