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1. Introduction and Objective

Flow over a circular cylinder is considered as one of the fundamental problems in fluid mechanics and it has numerous engineering applications such as flow over pantographs on high speed trains, airplane landing-gear, bridge pillars, sports equipment, transmission lines, heat
exchangers, high rise buildings, automobile side mirror and many more. The unsteady nature of the flow field Is responsible for structural vibrations and aerodynamic sound generation. Several flow control techniques have been introduced in many of the previous studies to
control the structural vibrations and the aerodynamic sound. One such flow control technique is a cylinder subjected to rotary oscillations in a mean flow. In the present study, numerical analysis of aerodynamic sound fields radiated due to unsteady laminar flow past a circular
cylinder subjected to rotary motions has been carried out using direct numerical simulations at a Reynolds number of Re = 150 and a Mach number of M = 0.2. Nature of aerodynamic sound fields has been studied for different forcing conditions.
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O . ~igure 6: Time-variation of far-field sound pressures and their frequency spectrum for f,. = 0.4 & A;= 0.1.
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Figure 1: (a) Flow over a cylinder subjected to rotary motions, (b) Computational domain.
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2. Forcing Parameters

<+ Non-dimensional tangential speed of the cylinder is prescribed as

V.(t) =24, +ACos(2rtf, St,t")
Where, A; = Q,D/2U,, Is the maximum value of non-dimensional surface speed. The
variables f. = f¢/f,, St, and t* account for forcing frequency-ratio, Strouhal number
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obtained for flow over a stationary cylinder at Re = 150 and the non-dimensional time, o.002| 0.002 0.002] 0.002]

respectively. Here, Q,, D, U, and f, represent maximum angular velocity of rotary|| Figure 3: Variation of disturbance pressure fields for various values of f,. at 4,. = 2.0. o00o] 0002) o000 o00a]

oscillation, diameter of the cylinder, free-stream velocity and the shedding frequency of|| . . _ _ _ o o s%0 | abswmm o ws iy | abswi w3 ado 56700
*» Positive and negative values of disturbance pressure are represented by solid and

a stationary cylinder at Re = 150, respectively. : _ . . . . .
. . : Figure 7: Modulation patterns of far-field sound pressure for different f,. values with A; = 0.1at a
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oo i ith i location (r, 8) = (75,90°) .
A, =2 0<A.<2 0<f <2 * The wavelength of the generated disturbance pressure pulses decreases with increase
In forcing frequency-ratio.

** Non-Synchronous zone: Otherwise “* Modulation patterns of the sound fields are significantly varied with change in f,. value.
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“* As the system Is In the synchronous zone for f,. # 0.0 cases, the vortex shedding
frequency-ratio Is same as forcing frequency-ratio.

“* For f. = 1.0 cases, the wake width has been reduced due to increase In mean
rotation rate which further resulted in drag reduction. Figure 5: Directivity patterns of radiated sound fields at r = 75.




